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Abstract 
Magnetic motion trackers have been widely used for tracking user 
head / hand pose information owing to their advantages such as 
size, occlusion-less tracking environment and high sample rate. 
Yet, issues such as latency and jitter leave magnetic tracker 
technology unfavorable as compared to other tracker 
technologies. While latency is due to tracker hardware employed, 
jitter is due to magnetic field distortion caused by the presence of 
metals nearby. These issues permit the emergence of registration 
errors when employed for Virtual Environment (VE) systems, 
specifically for interactive Virtual Reality (VR) or Augmented 
Reality (AR) applications. This paper discusses the integration of 
prediction-smoothing algorithms to achieve accurate registration 
for a magnetic tracker-based immersive Augmented Reality – 
Computational Fluid Dynamics (CFD) environment. In this 
project, Kalman and Gaussian filters are utilized to remove 
latency and jitter effects. In addition, to allow efficient control of 
head-pose data prediction, a control variable is appended to the 
Kalman dynamic equation. Furthermore, to permit real-time 
latency calibration during immersive visualization, speech-
recognition is integrated with the system. Such integration, apart 
from enabling accurate calibration of AR setup, permits robust 
on-the-fly latency calibration, thereby facilitating effective user 
experience during interactive, immersive AR visualization of 
CFD datasets of indoor spaces. 
Keywords: Magnetic motion tracker, registration, augmented 
reality, Kalman filter, building simulation. 

1. INTRODUCTION 

Virtual Environments (VE) allow users to experience their 
settings so as to visualize, navigate and manipulate objects in real-
time using high-end visualization and interactive devices. Virtual 
Reality (VR) and Augmented Reality (AR) facilitate users to 
interact by means of complete or partial immersion, respectively. 
In a VR system, owing to the control of visual, and in some cases, 
aural and proprioceptive senses, the user experiences complete 
immersion. Contrastingly, AR permits the user to move in actual-
space, as well as, interact with augmented graphical objects 
necessitating a sense of presence [1]. 

Virtual Environments have been widely employed for a variety of 
applications ranging from scientific visualization to computer 
games. One such application is the visualization of CFD 
simulation results using VEs. CFD simulations are extensively 
used in aerospace, nuclear, automotive, biomedical, 
environmental and building design-construction industries. 
Immersive visualization of CFD simulation allows designers to 
fine-tune their work based on performance results, ahead of 
building them in reality. Such ‘immersive building simulation’ by 
way of integration of VEs with building data such as CFD will 
enhance the comprehension of simulated results [2]. Applications 

of VEs for CFD visualization includes the virtual wind tunnel that 
allowed visualization of particles as streamlines, path lines, 
volume arrows, etc. [3]; immersive visualization for structural 
analysis [4]; immersive real-time fluid simulation [5]; building 
performance visualization [6-8] etc. Besides, enhanced 
multimodal interactions for data manipulation have enabled joint-
performance of tasks by humans and computers or Human-
Computer Interaction (HCI) [9]. Some of the HCI modalities that 
enable better accessibility and effective data manipulation for 
VEs include speech-recognition, gesture-recognition mechanisms, 
wands, joysticks, six Degrees of Freedom (DoF) mouse etc. 
Owing to its naturalness and simplicity, speech-recognition 
techniques have been utilized in supporting word processing [10], 
CFD visualization [11] etc. However, such interactive immersive 
visualization using VEs rely on the immersiveness of the system 
employed for better comprehension of data. 

Immersiveness of AR systems largely depends on accurate 
registration of virtual objects with the real world such that the 
scene matches with user perception. Accurate registration 
demands precise information such as the precise location of user, 
or otherwise, the position-orientation (6 DoF) information of the 
user’s head. This is due to the fact that the views generated by the 
virtual camera should coincide with user’s perception of the 
actual space for effective immersive experience. Therefore, any 
mis-registration will prevent the user from seeing the virtual and 
real objects as fused together, thus prompting paramount 
importance to (a) the selection of appropriate motion tracker 
technology and (b) registration inaccuracies during the motion 
tracking process. Motion tracker technologies include mechanical, 
inertial, acoustic, magnetic, optical, radio and microwave sensing. 
The selection of appropriate motion tracker depends on the task to 
be performed, and pursues several possible objectives [12], such 
as sense of presence, perceptual stability, no occurrence of 
simulation sickness and no degradation of task performance. 
Incorrect super-positions of virtual objects in actual-space are 
referred to as registration errors; they are of two types – static 
and dynamic. While static registration errors are due to optical 
distortion, system errors such as mechanical misalignments, jitter 
and incorrect viewing parameters, and dynamic registration are 
largely due to system latency and jitter [13]. In addition, these 
registration errors vary according to the tracker technology 
employed and the task to be performed.  

Magnetic motion trackers have been widely used for tracking user 
movements in VEs due to their size, relatively higher sample rate, 
occlusion-less, price etc. Magnetic trackers rely on measurements 
of the local magnetic field vector generated by the transmitter, 
either via Direct Current (DC) or Alternate Current (AC) systems. 
The generation of near-field, low-frequency magnetic field 
vectors are sensed with 3 collocated reception antennas bound 
within a sensor. The 6DoF output from the sensor can be applied 
to generate new views. Despite excellent advantages, magnetic 
trackers have their weaknesses such as latency and jitter. Latency 
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is due to the asynchronous nature at which the sensor 
measurements are tracked and their corresponding pose estimates 
are available to the visualization system, Figure 1 [12]. Jitter is 
due to the presence of ferrous or electronic devices in the 
surrounding and noise in the AC/DC system.   Motion tracking 
takes a finite time-step to acquire data of user head-pose, compose 
and generate new sets of graphical objects based on user’s 
viewpoint, and pose them to the Head Mounted Device (HMD) 
for immersive visualization. This can be disadvantageous, 
especially, for interactive AR applications in which the user may 
perceive the virtual objects lag behind, thus leading to defective 
task performance, as well as, motion sickness. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Tracker dataflow pipeline and latency. 
 

In spite of vast developments in motion tracker and computer 
hardware technologies, precise registration of virtual objects to 
actual-space remains a principal concern. For magnetic trackers, 
this is largely due to latency and jitter.  

This paper discusses the integration of prediction - smoothing 
algorithms to achieve accurate registration for an immersive AR-
CFD environment. In this paper, a predictor-corrector algorithm – 
Kalman filter is integrated with an existing interactive AR system 
to remove latency issues. Additionally, Gaussian filter has been 
incorporated to remove the jitter created by the field distortion 
and interference by ferrous metals in the surroundings. The robust 
magnetic tracking system has been integrated with existing 
interactive, immersive AR system to facilitate manipulation of 
CFD datasets. To allow efficient control of head-pose data 
prediction, a control variable is appended to the Kalman dynamic 
equation. In addition, to permit real-time latency calibration 
during immersive visualization, speech-recognition is integrated 
with the system. Such integration allowed accurate registration of 
graphical objects in actual-space, both in static and dynamic 
states, and permitted effective user experience. Moreover, it 
allowed robust on-the-fly latency calibration during immersive 
building simulation. 

2. ROBUST MAGNETIC MOTION TRACKING 
SYSTEM DYNAMICS 

The robust magnetic motion tracking for immersive AR 
visualization utilizes two routines – Kalman filter routine and 
Gaussian filter routine, Figure 2. While Kalman filter routine 

predicts future head position-orientation estimates thus removing 
latency effects, Gaussian filter routine smoothens the data to 
eliminate the jittering effect. For robust tracking, the raw tracker 
data is filtered using Kalman and Gaussian routines before being 
sent to the AR visualization pipeline. 

 

 

 

 

 

Figure 2: Robust magnetic motion tracking system. 
 

2.1 Kalman Filter Routine 
Kalman filter is a recursive solution to discrete data-linear 
filtering problem [14]. Kalman filter uses statistical models to 
weigh each new measurement relative to past information, and 
operates with any number of state vectors. Owing to its prediction 
of a priori estimates for future time-steps, this filter has been 
widely applied in military and civilian navigation systems. Earlier 
attempts include prediction of head pose using ten state dynamic 
model of HMD orientation [15]; using a modified complementary 
Kalman filter applied to orientation measurements [16]; 
prediction for inertial trackers [17] and optical trackers [18]. 
Kalman filter consists of (a) time update equations [predictor 
algorithm] for projecting forward the current state and error 
covariance estimates to obtain a priori estimates for the next time 
step, and (b) measurement update equations [corrector algorithm] 
for incorporating a new measurement into the a priori estimate to 
obtain an improved a posteriori estimate [19].  Kalman filter can 
be thought of as a predictor-corrector algorithm that avoids many 
of the computations and storage requirements by retaining only 
those values that are essential for processing future observations. 

2.1.1 Kalman Filter Method Integration 
In the system developed, the magnetic sensor attached to the 
HMD tracks the head-pose information of the user. This data is 
filtered by Kalman algorithm in real-time. Based on the current 
state estimates, Kalman filter predicts the next head-pose data, 
Figure 3. This enables the reduction of time lag central to the AR 
system, as well as, allows accurate registration of virtual objects 
in  actual-space.  

 

 

Figure 3: Kalman filter integration. 
Kalman filter presents a linear, unbiased and minimum error 
variance recursive algorithm to optimally estimate the unknown 
state of a linear dynamical system from data taken at discrete time 
intervals. The prediction of head-pose data by Kalman filter can 
be considered as a two-step process. In the first step, an a priori 
new state is estimated based on previous state estimates (predictor 
equations). By observing the present state, an error correction is 
performed to the a priori new state estimate to optimize and 
generate a posteriori new state estimate (corrector equations), as 
shown in Figure 4. 
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Figure 4: Kalman filter system dynamics. 
[NSE – New State Estimate; CV – Control Variable; ST – State 

Transition] 
 
A priori new state estimate is computed by propagating forward 
the current state estimate. In order to manipulate the prediction of 
new state estimates, a control variable is introduced to the 
prediction equation. In this project, the control variable is the ratio 
of covariance of true data and predicted data. Thus, the a priori 
predicted new state estimate is, 
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ˆ'ˆ

1  

1'ˆ
+kX  - A priori future 6DoF data 

kX̂  - Current 6DoF data 

kA , kB  - Transition matrices 

kµ  - Control variable 

At every discrete time interval, the error covariance is computed 
considering a random white noise measurement. The error 
covariance is utilized to update the Kalman Gain (KG). KG is 
directly proportional to the uncertainty in the estimate and 
inversely proportional to uncertainty in the measurement. KG is 
utilized to compute new optimal state estimates, as well as, update 
error estimates, Figure 5. The prior error covariance and Kalman 
Gain equations are, 
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1' +kP  - Prior error covariance 

kP  - Error covariance 

kQ  - Random white noise 

1+kK  - Kalman Gain 

kH  - Matrix-valued Hessian function 

kR  - Measurement error covariance 

 

 

 

 

 
Figure 5: Kalman Gain utilization. 

 
With the Kalman Gain, the a priori state estimate is updated for 
errors. The optimal new state estimate or a posteriori estimate is 
the summation of predicted estimate and an error term. The error 
term comprises of the error based on current observations. This 
cycle is repeated in real-time to predict future head-pose 
estimates. Thus, the a posteriori new state equation is, 
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ˆ

+KX  - A posteriori future 6DoF 

kZ  - Current 6DoF observation 

In this routine, Kalman filter addresses the general problem of 
trying to estimate the state vector of a discrete-time controlled 
process that is governed by the linear stochastic difference 
equation. Applying this routine, the head pose data at time t is 
filtered through Kalman algorithm to obtain new future head-pose 
data. Some of the Kalman filter functions utilized for this project 
include getStateVector() to obtain state vector; filter() to evaluate 
the likelihood function for the state-space model, update() to 
update the state covariance matrix at every time step, setQ() to set 
new values to control variable in the a priori state estimate 
equation etc. 

2.1.2 Real-time, On-line Latency Calibration 
Although the integration of Kalman filter has alleviated the issue 
of latency, there is a need to manipulate the future head-pose 
prediction outputs during real-time immersive visualization. It is 
highly difficult for AR user wearing a HMD to access a mouse or 
keyboard to manipulate the control variable attached to the a 
priori state estimate equation. Changes to the control variable can 
be utilized to calibrate the latency inherent to tracker hardware. 
To access and modify the value of the control variable by the user 
in real-time, speech-recognition technique has been incorporated, 
Figure 6. 

 

 

 

 

Figure 6: On-line latency calibration. 
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In this project, the built-in microphone with the HMD aids in 
transmitting user’s speech to the IBM Via Voice speech-engine 
[20]. The corresponding values are posted to the control variable 
successively, in real-time using the setQ() method. This facilitates 
on-line, on-the-fly latency calibration by the AR user during 
immersive visualization. The predicted head position-orientation 
data is streamlined to the Gaussian filter routine to eliminate any 
undesired jitter effects. A comparison of predicted and actual 
head-pose data for 6DoF is presented in section 3. 

2.2 Gaussian Smoothing Routine 
In this routine, Gaussian filter is applied over predicted 6DoF data 
to remove any jitter effects caused by the possible presence of 
metals and or noise associated with the transmitter. Data 
smoothing involves the sliding of a convolution kernel over the 
predicted head-pose data in real-time. In this project, the 6 DoF 
real-time tracker data can be represented as, 

∞= 11 )},,,,,({ cbazyxtRt  

Where x1,y1,z1 are sensor positions; a1, b1, c1 are sensor orientations 
along X,Y,Z at time t=1. 

A single-dimensional Gaussian filter is utilized to smoothen the 
tracker data, Figure 7. 
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σ – Standard Deviation 
Mean of the distribution is zero [centered]. 

 

 

 

 

 

 

Figure 7: Gaussian filter kernel. 

The convolution is performed by sliding the above kernel G(x) 
over R, in real-time to obtain smoothened, jitter-free calibrated 
tracker data. The smoothened head pose data is utilized to 
generate corresponding graphical views for immersive 
visualization. 

∑ ∞
=−= 1)().( txGxtRR  

6 DoF data { PositionX, PositionY, PositionZ, AngleX, AngleY, AngleZ} 
* Gaussian Filter Kernel {0.553, 0.350, 0.088, 0.009} 
 

3. EXPERIMENTAL RESULTS 

The integration of Kalman and Gaussian filters removed the 
undesirable latency and jitter effects. Evaluation of the integrated 
system performance is vital to understand its effectiveness in 

predicting future head-pose estimates. The integrated system was 
found to be performing sufficiently well in terms of providing an 
uninterrupted sense of presence and eliminating registration errors 
between the virtual and real objects. In this section, the 
comparison of Kalman filter prediction data and actual magnetic 
sensor data is provided for all 6DoF head-pose data ranges, 
Figures 8-13.  

 

 

 

 

 

 

 

Figure 8: Sensor angle prediction (red) along X-axis. 
 

 

 

 

 

 

 

Figure 9: Sensor angle prediction (red) along Y-axis. 
 

 

 

 

 

 

 

Figure 10: Sensor angle prediction (red) along Z-axis. 
 
 
 
 
 

 

 

 

Figure 11: Sensor angle prediction (red) about X-axis. 
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Figure 12: Sensor angle prediction (red) about Y-axis. 
 

 

 

 

 

 

 

Figure 13: Sensor angle prediction (red) about Z-axis. 
 

In addition, the integration of speech-recognition enabled 
effective real-time manipulation of control variable values, 
thereby lending efficient latency calibration during immersive 
visualization, Figure 14.  

 

Figure 14: Registration of virtual white lines and graphical 
objects in actual-space, as seen from HMD. 

 

4. INTEGRATION TO INTERACTIVE, IMMERSIVE 
AR VISUALIZATION SYSTEM 

The prediction-smoothing algorithms were integrated to a larger 
AR-CFD framework to enable robust motion tracking with 
magnetic motion trackers for immersive building simulation 
[21,22]. The AR-CFD framework for building simulation 
encompasses three modules (1) CFD analysis module that 
generates CFD datasets, (2) HCI module that comprises of a 

library of standardized glossary of gesture recognition tasks, and 
(3) AR visualization module that aids in immersive visualization 
of CFD results in actual-space, Figure 15.  

 

 

 

 

 

 

 

 

Figure 15: Immersive Building Simulation framework. 
 
As the boundary conditions change, results of the CFD 
simulations are stored in Virtual Reality Modeling Language 
(VRML) format. These results represent corresponding iso-planes 
and iso-surfaces of the indoor thermal environment. Unique 
identifiers are attached to these VRML slices for quick display 
onto HMD based on user’s hand gestures. Hand gestures are 
transformed into a set of functions that facilitate better 
manipulation of CFD datasets. Apart from being an intuitive 
approach, gestures are space-related modality that supports 
communication of concrete and spatial content. Some of the hand 
shapes developed are, ‘Closed_Fist’, ‘Open_Flat_Palm’, 
‘Touch_Finger’, ‘Shoot_Hand’ and ‘Inc_Thumb’ that correspond 
to ‘grab a plane’, ‘creating new iso-plane’, ‘information 
gathering’, ‘focusing on specific space/area’, and ‘enlarging 
graphical information’ respectively, table 1.  

Table 1: Hand shapes and corresponding functions. 
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In this project, CyberGlove [23] is employed to transform posture 
data into a general description of hand-shape through forward 
kinematics to compute hand segment positions from given joint 
angles. Gestures were studied to determine the minimum number 
of joint angles necessary to ensure the uniqueness of the gesture. 
Addition of speech-recognition has rendered the AR-CFD system 
multimodal. Speech-recognition is utilized for real-time latency 
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calibration. Moreover, synergistic uses of speech and gesture 
recognitions enhance the naturalness and facilitate better 
accessibility for effective data manipulation during immersive 
visualization. 

AR visualization module assists in the visualization of CFD 
datasets with the support of magnetic position-orientation trackers 
and a HMD.  Flock of Birds magnetic trackers [24] were 
employed to track the user’s head pose information. These 
trackers have a static accuracy of 1.8mm (position-RMS) and 0.5˚ 
(orientation-RMS) over a verified range of 20.3cm to 76.2cm. A 
catadioptric (Cathode Ray Tube) CRT-based HMD [25] was 
utilized to visualize virtual objects in actual-space. The interactive 
immersive AR system maps the CFD result onto actual-space 
through the HMD. The user can navigate through the space, 
inquire about its thermal conditions, manipulate the results of data 
displayed, as well as, interact with the actual environment. The 
development of the system included specialized software written 
in C++, Java APIs apart from JSAPI [26] for speech recognition 
and JMSL [27] for Kalman filter objects. 

5. CONCLUSIONS 

This paper presented a method to achieve robust motion tracking 
with magnetic motion trackers through the integration of 
prediction-smoothing algorithms. The integration of Kalman and 
Gaussian filters to the existing AR system has improved the 
registration of virtual objects to actual-space, thus eliminating 
errors associated with latency and jitter. Moreover, the addition of 
real-time latency calibration technique through direct 
manipulation of control variable values has considerably 
enhanced the reliability of magnetic-based motion trackers for 
immersive AR applications. 

Rapid user movement, both translation and rotation, allows the 
emergence of instantaneous errors in predicted head-pose 
information as compared to tracker data, as seen in Figure 11. 
Future study will incorporate methods that would allow the 
elimination of such errors. One approach is to introduce a multi-
state Kalman filter that would switch between different states 
depending on user’s head movement in 6DoF. This will provide 
magnetic motion trackers more reliable, accurate and tractable for 
most of the VE applications. 
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